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Core Result Experiments

e High dimensional random walks projected onto PCA components are Lissajous curves:

Summary

e Deep neural networks (NNs) are high dimensional objects which makes
visualizing the training process difficult. One approach some authors have
proposed is to perform principal components analysis (PCA) on the trajectory of

Preliminaries
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An n-dimensional random walk can be written as follows:
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the parameters of the NNs and visualize the projection onto the lowest PCA X; = X;_1 + &, £ ~ P, 3 SO s
dimensions (e.g., Lorch 2016; Lipton 2016; Li et al. 2018). When projected onto o — ; e %&
the lowest PCA components the trajectory appears smooth and contains a large where Xg = 0 and P is an arbitrary probability distribution. We can also write this in matrix form: P i | | _ '%,) ; (I A ‘9/0(/
. o o o o 0 0 O’ = 0 > 0
fraction of the variance (typically over 80% in the first two PCA components). [ 10 0 0y = | | Oo% . | | Q"Z
_q ; O . | T, 1;(;?A1 10 g g 1;2CA22 6 @{f- T 2 10 3 ) 2 6 @\9

e We show that when PCA is applied to a random walk in the limit of an infinite
number of dimensions:
o Approximately 60% of the variance is in the first PCA component; 80% of the . % % 'm :
variance is in the first two PCA components. \ 0 - 0 -1 1/ LG
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© T,he p,rOJeCtlon of a random walk onto any two PCA components is Performing PCA is equivalent to finding the eigenvalues and eignevectors of the following matrix: I N B 1 T ; :
Lissajous curve. =7 = | = | = | : :

o These results are independent of the noise distribution. 2% — cs-1RRTS-TC X—CX C=1I_ 111" &l R |l |2l o 1 -

o These results also apply to a random walk with momentum | ’ n s I e e A e L - L=~ -
= : : . oo o PCA, PCA, PCA; .

o These results also apply to a random walk in a quadratic well (initialized near e limit that d > " - X o off | " ,
the origin) in the early stages of the trajectory. Inthe fimit that " wewillhave RR™ — T because the off diagonal terms will be E[¢;]” = 0 e The explained variance of o e The PCA projected trajectories of an

each PCA component we 10 e
observe closely matches ¢ 1
our predictions for botha &

Ornstein-Uhlenbeck process resemble
perturbed Lissajous curves:

whereas the on diagonal terms will be E[¢2] = >0 V[¢] =1

e We perform PCA on the parameter trajectories of a linear model trained on

WCIFAR-10, a small NN trained on MNIST, and ResNet-50 trained on ImageNet hiah dimensional random 5 .o’ N
- ' actor i irculant matrices . | g
and find that the PCA projected trajectories of the parameters closely resemble Asymptotic convergence to circulan walk and a high S 1) SN
PCA-projected random walks, especially in the early stages of training. o , | | , dimensional random walk 0% T pea,
In the limit that n — o0 banded Toeplitz matrices become asymptotically convergent to circulant with momentum: o4 7NN K V] o
matrices. This implies that they have the same inverses and distribution of eigenvalues and 10305 o . ], §m §w \\/0
eigenvectors as the corresponding circulant matrices. Sy sampancnt NS AN b
Motivation The eigenvalues of a circulant matrix with entries ¢o, C1, ... are e PCA projections of the training LN LTS
trajectory of a large neural network ° | £ | €2l |
C. . . . . . . N, — B Cowi 4 n—1 resemble Lissajous curves B Wi/t R ORI 1 N fureni
e NN training is a high dimensional stochastic process. This makes cire,ky = €0 ¥ Cn—1Wk + Cp—aWjp + ... F Wy : Trameda“nejr nodel on CIFAR-10 Cwea T Twed T Teast
understanding and visualizing the training procedure difficult. Using this, we can derive the variance in each PCA component: Lgrr;rg;ggeori‘?gr? (t:f?fléler:l:itgjle 1000 §m §@O §® §®
1 steps EDSUUEA [ NS - G - S
. . . . . I 718 k ' -50- PCA, PCA, PCA; PCA,
e Several authors have visualized NN training by performing PCA on ANk = 5 {1 g (_)] ° Trained ResNet50-2 o ImageNet for N | .
. - ST : ; n ' L Bt R - =} N T
the training trajectory and projecting onto the first few components i Ifr'omdthe middle 15000 steps PSRN
. . .. . . . . . e Explained variance ratio distribution is & 107 1 8 er\ TSN e
(e.g., Lorch 2016; Lipton 2016; Li et al. 201 8). These authors have This implies that the explained variance ratio of each component is: CanparabIeto 2 random walk early in 21333_ U i :
found: training with the exception of the first 5 100 endormaing § slenf
' 6 component. R I e TR T
pk pm— 2 2 PCA component PCA component
o Although the trajectory when projected onto random dimensions looks mk AT AN
similar to a random walk, the PCA projected trajectories are very smooth. . . . . . . o < ol | =
o A large fraction of the variance is in the first few PCA components Since the eigenvectors of circulant matrices are simply Fourier modes, we show that the projection ait| : R s f
(between 80--90% in the first few). OntO d PCA Component IS g|Ven by: ~2%.06 POCOEA” 0.06 —l'goooo—'gocdcxtl)éoo ,?
. . . . . gle=2 - 4le- glea g le2 Q
o This suggests an interpretation that although there is a stochastic N 2 Tkt B B B K - \“4,@((
component to NN training, in general the NN predominantly moves in a PEAKE = Y~ SRR\ S Sl S /v §>© %o
small number of dimensions, and does so in a consistent manner. 3l ATV B (7 o
PCA, PCA, PCA,
A —— This implies that the projection of a high dimensional random walk onto PCA components is a ; :
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PCA variances of a random walk with momentum: ¥, = X Ly -l .l - 5 3 . | 3 | ol _
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